CHARACTERIZATION OF *O*-TRIMETHYLSILYL DERIVATIVES OF D-GLUCOSE, D-GALACTOSE, AND D-MANNOSE BY GAS-LIQUID CHROMA-TOGRAPHY-CHEMICAL-IONIZATION MASS SPECTROMETRY WITH AMMONIA AS REAGENT GAS*

TAKESHI MURATA AND SEIJI TAKAHASHI

Analytical Application Laboratory, Kyoto Laboratory Shimadzu Seisakusho Ltd., Nakagyo-ku, Kyoto (Japan)

(Received October 12, 1976; accepted for publication, in revised form, April 28th, 1977)

ABSTRACT

The per(trimethylsilyl) ethers of D-glucose, D-galactose, and D-mannose were analyzed by g.l.c.-c.i.m.s. with ammonia as the reagent gas. C.i.m.s. gave simple fragmentation and fragment ions of high intensity in the high-mass range where the QM⁺ ion is also detected. The β -D anomers gave ions at m/e 558 showing intensities 3–12 times those of the α -D anomers. The epimers could be distinguished by differences in the intensities of the ions and by the observation that D-glucose gave a base peak at m/e 198, D-galactose at m/e 468, and D-mannose at m/e 204. The pyranose and furanose structures could be distinguished by comparing the ion intensities at m/e 198, m/e 271, m/e 361, m/e 396, and m/e 451. A similar analysis was also performed with 2-methylpropane as the reagent gas.

INTRODUCTION

The electron-impact mass spectrometry (e.i.m.s.) of monosaccharide derivatives, such as O-methyl^{1,2}, O-acetyl³, O-isopropylidene^{4,5}, O-trimethylsilyl⁶⁻⁸, and O-trifluoroacetyl⁹ derivatives, has been extensively investigated. Of special interest is the technique of deuterium labeling and exact mass determination to study the minute fragmentations of the O-trimethylsilyl derivatives, and the use of the difference in the ion intensities of the m/e 204 and m/e 217 ions to differentiate between furanose and pyranose structures⁶. Ando et al.¹⁰ studied the mass spectrum of the O-trifluoroacetyl derivatives of methyl hexopyranosides to differentiate between anomers and epimers. The disadvantages of the e.i.m.s. technique is that the ion intensities are rather low in the high-mass range where molecular ions are detected, and that it cannot clearly differentiate between such stereoisomers as anomers and epimers. This is most conspicuous with the O-trimethylsilyl derivatives, which are the most

^{*}Reported in part at the Japanese Conferences on Organic Mass Spectrometry in 1974 (Sendai), and 1976 (Tokyo).

commonly used. Hogg and Nagabhushan¹¹ analyzed, by chemical-ionization mass spectrometry (c.i.m.s.) in the presence of ammonia as the reagent gas, D-glucose, methyl α -D-glucopyranoside and β -D-glucopyranoside, and O-acetyl derivatives of α , α -trehalose; they detected the $(M+NH_4)^+$ ion and showed that molecular weights could easily be detected. They were also able to follow the fragmentation of the protonated molecular ion of ¹³C-labeled acetates when methane was used as the reagent gas. The new technique of chemical-ionization mass spectrometry^{12,13} has not been reported, as yet, for the O-trimethylsilyl derivatives of monosaccharides.

In the present paper, we describe the analysis by gas-liquid chromatography-chemical-ionization mass spectrometry (g.l.c.-c.i.m.s.) of the O-trimethylsilyl derivatives of D-glucose, D-galactose, and D-mannose with ammonia as the reagent gas. It was found that the molecular weights are easily determined, that the ion intensity is high in the high-mass range, that the fragmentation is simple, and that the fragment ions are produced in a quantity high enough to differentiate between stereoisomers (epimers and anomers).

RESULTS AND DISCUSSION

The gas-liquid chromatogram of the O-trimethylsilyl derivatives of D-galactose

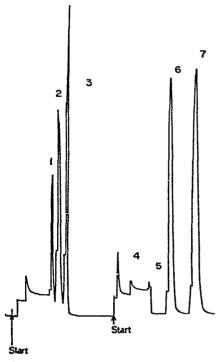


Fig. 1. Gas—liquid chromatograms of the per-O-trimethylsilyl derivatives of D-galactose and D-glucose: (1) α -D-galactofuranose (1), (2) α -D-galactopyranose (2), (3) β -D-galactopyranose (3), (4) not identified, (5) α -D-glucofuranose (4), (6) α -D-glucopyranose (5), and (7) β -D-glucopyranose (6).

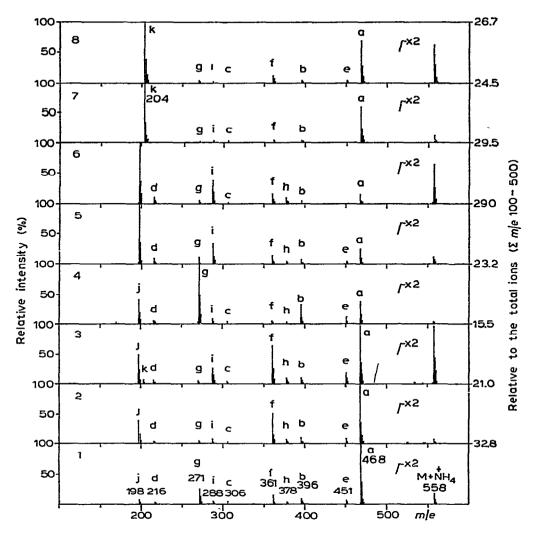
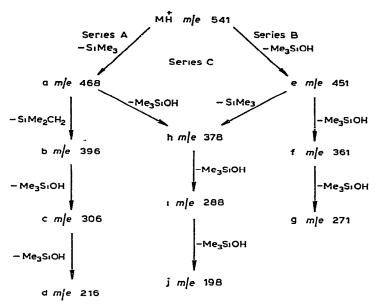



Fig. 2. Chemical-ionization mass spectra of the per-O-trimethylsilyl derivatives of D-galactose, D-glucose, and D-mannose.

shows three peaks (P-1, P-2, and P-3), and that of D-glucose four peaks (P-4, P-5, P-6, and P-7) (Fig. 1). The corresponding mass spectra are presented in Fig. 2, which also includes the mass spectra of O-trimethylsilyl derivatives of D-mannose. Table I shows the ratios of the fragment ions relative to the total ion, and the relative intensities.

Chemical-ionization mass spectra. — We confined our study to the significant fragment ions of c.i.m.s., as a satisfactory study by e.i.m.s. has been published⁶. The quasi-molecular ions (QM^+) is recorded at m/e 558 $[M+18=(M+NH_4)^+]$, ammonia being the reagent gas. The fragmentations are classified into series A, B, and C (Scheme 1). Series A starts from the m/e 468 ion $(MH^+ - SiMe_3)$. The m/e

Scheme 1. Chemical-ionization mass fragmentation of series A, B, and C.

396 ion is produced by elimination of $SiMe_2C^+H_2$, the m/e 306 ion is produced by elimination of one Me_3SiOH fragments, and the last ion $(m/e\ 216)$ is produced by elimination of one Me_3SiOH fragment. Series B starts from the m/e 451 ion (MH^+-Me_3SiOH) . The Me_3SiOH fragments are eliminated successively to produce the m/e 361 ion (two Me_3SiOH fragments have been eliminated from the MH^+ ion), and the m/e 271 ion (three Me_3SiOH fragments have been lost). Series C starts from the m/e 378 ion, which has been produced from the m/e 468 ion of the series A by elimination of one Me_3SiOH fragment or from the m/e 451 ion of the series B by elimination of one Si^+Me_3 fragment. The next ion in the series C is the m/e 288 ion, produced by elimination of one Me_3SiOH fragment, and then the m/e 198 ion is produced by elimination of two Me_3SiOH fragments. The last fragment ions of the three series are the m/e 216, m/e 271, and m/e 198 ions, respectively. D-Mannose gave, at m/e 204, a base peak that was less intense than those for D-glucose and D-galactose. This peak is very characteristic for the pyranose structure in e.i.m.s.

Differentiation of anomers. — Anomers are difficult to differentiate by e.i.m.s. of the O-trimethylsilyl derivatives. Ando et al.¹⁰ reported that, in the e.i.m.s. of the trifluoroacetyl derivatives, the molecular ion of the β -D anomer has always about twice the intensity of that of the corresponding α -D anomer.

In c.i.m.s., however, 1,2,3,4,6-penta-O-trimethylsilyl- α -(2) and β -D-galacto-pyranose (3) gave a base peak at m/e 468 and a quite similar profile of the peak range. The only difference resided in the relative intensity of the $(M + NH_4)^+$ ion of 3 showing a much more intense peak than that of 2. The intensity of the $(M + NH_4)^+$ ion, relative to the total ion-intensity, was 1% for 2 and 8.8% for 3. Relative

TOTAL AND RELATIVE INTENSITY OF IMPORTANT IONS OF PER-O-TRIMETHYLSILYL DERIVATIVES (1-7) OF D-GALACTOSE AND D-GLUCOSE TABLE I

		Compounds	spun												
<i>Ions</i> ^a	m/e	_		7		က		4		S		9		7	
		T ₀	Ro	T	R	T	R	T	R	T	R	T	R	T	æ
(M + NH ₄)+	558	3.4	10.2	1.0	4.5	8.8	56.3	1.8	5.2	0.8	3.2	2.3	8.2	7.8	26.6
್ಷ	468	32.8	100.0	21.0	100.0	15.5	100.0	34.5	100.0	8.2	35.5	7.7	28.0	5.5	18.6
v	451	4.1	12.4	3.4	16.3	3.2	20.3	9.4	1:1	3.5	15.2	8.0	2.9	1	1
٩	396	4.2	12.9	1.9	8.8	1.4	8.9	8.0	2.1	6,5	28.0	2.2	8.0	7.5	5.0
4	378	0.5	1.5	1,4	8.9	1.2	9.4	0.7	1,8	0.5	2.1	1.7	6.3	1.4	4.8
6	361	5.7	17.4	10.2	48.8	10,3	66.2	1.7	4,9	2:5	9.4	5.3	19.3	4.4	15.0
၁	306	1.4	4.2	1.2	5.7	1.0	6.3	2:1	5.9	1.0	4.1	6.0	3.4	9.0	2.1
-	288	0.4	1.0	4.4	20.8	4.5	28.8	1.2	3.5	4.8	20.5	10.8	39.5	10.9	36.9
50	271	7.6	23.2	1.7	8.0	0.5	3.1	1	i	23.1	100.0	3.4	12.7	1.3	4.3
p	216	1.2	3.5	1.0	4.7	1:1	7.3	12.7	36.7	2.4	10.1	2.7	9.7	2.9	9.7
•	198	2.3	6.9	8.7	41.2	8.6	63.0	2.8	8.1	10.1	43.3	27.4	100.0	29.5	100.0

^aQuasi-molecular ion and fragment ions. ^bT, Percentage relative to the total ion intensities (Σ m/e 100 - 500). ^cR, Relative intensity.

to the intensity of the base peak (100), the intensity of the $(M + NH_4)^+$ ion was 4.5% for 2 and 56.3% for 3.

1,2,3,4,6-Penta-O-trimethylsilyl- α -(5) and - β -D-glucopyranose (6) gave a base peak at in/e 198. Like the D-galactose derivatives, the D-glucose derivatives gave similar profiles of fragment ions in the mass-range lower than m/e 468. The β -D anomer 6 gave a more intense (M + NH₄)⁺ ion than did 5. The intensity of the (M + NH₄)⁺ ion, relative to the total ion intensity, was 2.3% for 5 and 7.8% for 6. Relative to the intensity of the base peak (100), the intensity of the (M + NH₄)⁺ ion was 8.2% for 5 and 26.6% for 6. The g ions (m/e 271) showed some different intensities, but none so conspicuous as the (M + NH₄)⁺ ions, the intensities of the ions of the α -D-anomers being 3-4 times greater than those of the corresponding β -D anomers, in both D-galactose and D-glucose derivatives.

1,2,3,4,5-Penta-O-trimethylsilyl- α -(7) and - β -D-mannopyranose (8) gave results similar to those of the D-galactose and D-glucose derivatives. Thus, the difference in abundance of the $(M + NH_4)^+$ ions for D-galactose, D-glucose, and D-mannose may be caused by the steric effects of the configuration of the trimethylsilyloxy group at C-1.

The intensity of the $(M + NH_4)^+$ ion relative to the total ion-intensity was examined against various operational conditions of c.i.m.s.; it was found that this intensity was the highest when the ion-source temperature was 180° and the pressure of the NH_3 gas 0.9 torr, hence showing the greatest difference between the anomers; under any operational conditions the intensity of the β -D anomer was the greater.

Differentiation of epimers. — The e.i.m.s. data of methyl ethers⁴, O-iso-propylidene derivatives⁴, and trifluoroacetates¹⁰ have been studied for differences between epimers. No significant difference in intensity from the high-mass to the

low-mass range was observed, either for these derivatives or for the O-trimethylsilyl derivatives⁹.

In c.i.m.s., however, 1,2,3,4,6-penta-O-trimethylsilyl-D-galactose gave the base peak a at m/e 468 and the D-mannose derivative gave a base peak k at m/e 204, in contrast with the base peak j at m/e 198 of the D-glucose derivative. D-Galactose, D-mannose, and D-glucose derivatives gave the same fragment ions, except the ion k. But the relative intensities of these ions were all different, except for the ions b and h (see Table I and Fig. 1).

The configuration at C-1 plays no role in the differentiation between epimers, since α -D-glucopyranose and β -D-glucopyranose derivatives, and α -D-galactopyranose and β -D-galactopyranose derivatives gave, respectively, similar mass spectra, except for the $(M + NH_4)^+$ ion.

Furanose derivatives 1 and 4. — In the chromatogram (see Fig. 1), the peak P-1 for the D-galactose derivative and the peak P-5 for the D-glucose derivative correspond to a furanose structure. They were identified by DeJongh et al.6 as corresponding to the derivatives of α - or β -D-galactofuranose, and α - or β -D-glucofuranose, respectively. In c.i.m.s., the pentakis(trimethylsilyl) ethers of p-galactose gave a base peak at m/e 468 (a), but the ratio to the total ion intensity was 15.5% for 2, 21.0% for 3, and 32.8% for 1. The 1,2,3,4,6-pentakis(trimethylsilyl) ether of α -(5) and β -D-glucopyranose (6), gave a base peak at 198, whereas the furanose 4 gave a base peak at m/e 271 (g). Another noticeable difference is the greater intensity of the ion g for 1 as compared to that of 2 and 3, whereas the intensity of the ions f, i, and j was lower for 2 and 3, as compared to that of 1. The intensity of the $(M + NH_4)^+$ ion relative to the total ion intensity was 3.4% for 1 and 0.8% for 4, and the intensity relative to the base peak was 10.2% for 1 and 3.2% for 4. Thus, like the α -D anomers of the pyranoses (4 and 5), the α -D anomers of the furanoses give a low ion-intensity. This suggests that 1 and 5 are the α-D-galactofuranose and α-Dglucofuranose derivatives, respectively, although no comparison could be made with the β -D anomer.

The epimers 1 and 4 could be differentiated by comparing the ions m/e 198 (j), m/e 271 (g), and m/e 468 (a). The g.l.c. of the D-glucose derivatives gave an additional P-4 (Fig. 1); its $(M + NH_4)^+$ ion had a low intensity, and the fragment ions were the same as those given by peaks P-1-P-6. As for the D-galactose derivatives, m/e 468 (a) was detected as the base peak, but ions g and d gave different intensities, and the retention time of P-4 did not coincide with the retention time of any of the peaks given by D-galactose derivatives. Thus, the P-4 peak could not be identified.

Analysis of per(trimethylsilyl) ethers of D-glucose and D-galactose with 2-methylpropane as reagent gas. — In this analysis, 2-methylpropane replaced ammonia as the reagent gas. The furanose and pyranose forms could be differentiated both for the D-glucose and D-galactose derivatives, the furanose form giving a high ion-intensity at m/e 271, and the pyranose form a high ion-intensity at m/e 361.

The anomers could also be easily differentiated by comparing the QM⁺ ion, $(M - H^+)$ at m/e 539 and $MH^+ - CH_4$ at m/e 525. The fragment ions at m/e 539 and

m/e 525 gave intensities of only 2-4% of that of the base peak at m/e 361. The β-D anomer, however, gave a high ion-intensity at m/e 539 and no ion or an ion of very low intensity, if any, at m/e 525. The α- and β-D anomers could be differentiated by examination of the QM⁺ ion and (MH⁺ - CH₄) ions in the same manner as with ammonia as the reagent gas.

The epimers could be differentiated by the ions at m/e 232 and m/e 244, the D-glucose derivative giving, at m/e 244, an ion having an intensity higher than that of the ion at m/e 232, whereas the D-galactose derivative gave an ion having a lower intensity at m/e 244. The ammonia gas gave better results for differentiating anomers and epimers than did 2-methylpropane. 2-Methylpropane could also serve for differentiating the D-galactose and D-glucose derivatives having furanose structures (1 and 4); 1 gave a highly intense ion at m/e 361, besides the base peak at m/e 271. Both 1 and 4 could be identified from the ratio of the $(M - H^+)$ ion and $(MH^+ - CH_4)$ ion.

EXPERIMENTAL

Materials. — D-Glucose (0.1 mg), D-galactose (0.1 mg), and D-mannose (0.1 mg) were obtained from Wake Chemicals Co. Ltd. (Kyoto, Japan) and were equilibrated in water for about 12 h.

Per-O-trimethylsilylation. — D-Galactose, D-glucose, and D-mannose were completely converted into the per-O-trimethylsilyl ethers by the method of Sweeley et al.¹⁴.

Gas-liquid chromatography-chemical-ionization mass spectrometry. — The analyses were performed with a Shimadzu LKB 9000 gas chromatograph-chemical-ionization-source mass spectrometer-computer combined system (Shimadzu Seisa-kusho Ltd., Nakagyo-ku, Kyoto, Japan). The data-processing system (GCMS-PAC 300DG) consisted of an OKITAC-4300C minicomputer with 12K core, a typewriter, an incremental plotter, a magnetic disc, and an interface to the g.l.c.-m.s. instrument. The gas-liquid chromatograph was equipped with a glass column 1.5m \times 3mm (i.d.) containing 2% of OV-17 on Chromosorb W (80–100 mesh), kept at 160°. The mass-spectrometric data were obtain with an ion-source temperature of 180°, a 500-eV electron energy, a 500- μ A emission current, and a 3.5-kV acceleration voltage. The reagent gases were ammonia and 2-methylpropane, at a pressure of the ionization source of 0.9 and 0.6 torr, respectively.

REFERENCES

- 1 N. K. Kochetkov, N. S. Wulfson, O. S. Chizhov, and B. M. Zolotarev, *Tetrahedron*, 19 (1963) 2209–2212, 21 (1965) 2029–2032.
- 2 N. K. KOCHETKOV AND O. S. CHIZHOV, Biochim. Biophys. Acta, 83 (1964) 132-134.
- 3 K. BIEMANN, D. C. DEJONGH, AND H. K. SCHNOES, J. Am. Chem. Soc., 85 (1963) 1763-1771.
- 4 D. C. DE JONGH AND K. BIEMANN, J. Am. Chem. Soc., 86 (1964) 67-74.
- 5 K. BIEMANN, H. K. SCHNOES, AND J. A. McCLOSKEY, Chem. Ind. (London), (1963) 448-452.
- 6 D. C. DeJongh, T. Radford, J. D. Hribar, S. Hanessian, M. Bieber, G. Dawson, and C. C. Sweeley, J. Am. Chem. Soc., 91 (1969) 1728-1740.

- 7 O. S. CHIZHOV, N. V. MOLODTSOV, AND N. K. KOCHETKOV, Carbohydr. Res., 4 (1967) 273-279.
- 8 J. Vink, J. H. W. Bruinsslot, J. J. Deridder, J. P. Kamerling, and J. F. G. Vliegenthart, J. Am. Chem. Soc., 94 (1972) 2542-2544.
- 9 O. S. CHIZHOV, B. A. DMITRIEV, B. M. ZOLOTAREV, A. YA. CHERNYAK, AND N. K. KOCHETKOV, Org. Mass Spectrom., 2 (1969) 947-951.
- 10 S. Ando, T. Ariga, and T. Yamakawa, Bull. Chem. Soc. Jpn., 49 (1976) 1335–1338.
- 11 A. M. HOGG AND T. L. NAGABHUSHAN, Tetrahedron Lett., (1972) 4827-4830.
- 12 F. H. FIELD, Acc. Chem. Res., 1, 42 (1968) 180-189.
- 13 B. Minson, Anal. Chem., 43 (13) (1971) 28A-43A.
- 14 C. C. SWEELEY, R. BENTLEY, M. MAKITA, AND W. W. WELLS, J. Am. Chem. Soc., 85 (1963) 2497-2507.